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Backgound

• About 1.5 years ago I was asked by our group 
to devise an adjoint for GPS zenith IPW for the 
new variational system we were undertaking,  
since I had been assimilating GPW zenith IPW 
in the older LAPS system.

• Without any idea of what an adjoint was, I 
agreed to code this up.

• I learned quite a bit through this exercise and 
thought it worthwhile to share.



Outline

• Review forward model (FM) development and 
multi-grid implications for a FM

• Adjoint development process – a 
methodology for other data sources

• Testing the adjoint 

– Discrete testing

– Testing with the solver (solution engine inside 
vLAPS) with this FM and adjoint

• Summary



Outline

• Development here is for vLAPS.

– However, it is important to note that the basic 
adjoint and forward model ideas are valid for 
other variational solution methods.

– Adjoints are explicitly tied to the forward model.  

• Adjoints are frequently mentioned in our 
work, it is hoped this presentation will help all 
to understand what adjoints are, how they can 
be developed, and how they are applied. 



Outline

• This is a “how to” talk.

• WARNING: Technical methods using Calculus 
will be employed, efforts were taken to make 
this presentation easy to understand.

• Take this simple forward model case as an 
example for more complex systems.  One can 
see how attention to detail is vital to success.



Math

• The Calculus refresher:
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Terms
• Forward model (FM) – as used here, it 

integrates the specific humidity control variable 
resulting in a analysis version of the measured 
quantity of total precipitable water (TPW) directly 
comparable with GPS-met data, a zenith total 
precipitable water observation. (AKA observation 
operator)  

• J, the penalty term, is computed from the FM value 
and the observation. 

• Minimization gets into the subject of 3 and 4DVAR 
which is not discussed directly in this presentation.



Terms

• Adjoint – gradient J with regard to a control 
variable at i,j,k.  Computed for gridpoints 
surrounding the observation location.  
Understand that an adjoint aids in solving for 
the minimum in the variational solver.  

• You can have a bad adjoint and still solve, but 
it will not be as efficient as the correct adjoint.  
There are methods that solve without an 
adjoint, and though they are slow, they have 
their place (i.e., non-linear forward models)



Desired final grid

Top view, or 

one “k” level.



Observation within the grid

GPS ob 

location



Old approximation
not used in vLAPS

Move to 

nearest grid 

cell



Old approximation
not used in vLAPS

Move to nearest 

grid location 

and solve 

“approximating” 

this as the data 

location.



Multi-grid method
In vLAPS, work 

is done in “multi-

grids” one grid 

cell at a time, but 

the cell size 

shrinks as higher 

resolutions are 

solved.

As subgrids are 

refined, cells 

approach the 

fine-scale grid 

dimensions.



Grid – ob location issue

GPS ob 

location 

As sub grids are 

invoked in 

solution, the 

observation 

location changes 

relative to the 

different 

subgrids.



Reconciling the ob with 
regard to the grid scale

In the finest 

grid resolution, 

the ob might 

wind up in a 

whole different 

cell from the 

start.  But each 

subgrid always 

employs 

different i,j 

corner points.

In fact, at the finer 

scales, the 

observation may 

change to a 

“different” grid cell.  

The observation in 

one subgrid could 

be very near a cell 

corner only to 

occupy the central 

part of a higher 

resolution subgrid.

Regardless, 

corner indices 

change with each 

grid.



Unit grid 
(scale independent)

One grid cell

(top view, or 

one “k” level.)

1, ,i j kq 

1, 1,i j kq  

, ,i j kq

, 1,i j kq 



Observation location 
is arbitrary

GPS ob 

location

, 1,i j kq  1, 1,i j kq  

1, ,i j kq 
, ,i j kq



Unit cell solution - Independent 
of single/multi grid

How to handle 

subgrids?

Bilinear 

interpolation of 

the control 

variable 

data to GPS 

observation

location – unique 

to each subgrid.

GPS ob 

location

, 1,i j kq  1, 1,i j kq  

1, ,i j kq 
, ,i j kq



Surface Layer

Integrating in

Vertical (k)

Must take into 

account only 

atmosphere above 

ground

SURFACE

(SH, P)k

Surface P

(SH, P)ks

(SH, P)K



Ik = water at level k computed from the control variable “q”

J = 1/2(         – GPS observation)2 where J is the minimized functional

Concept of a FM

EXACT GPS 

ob location

Bilinear 

interpolation of

control variable 

data to the GPS 

observation

location is done 

uniquely for all 

subgrids.
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Concept of a FM

GPS ob 

location

Ik = water at level k computed from the control variable “q”

J = 1/2(         – GPS observation)2 where J is the minimized functional

Bilinear 

interpolation of

control variable 

data to the GPS 

observation

location is done 

uniquely for all 

subgrids.

1
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Ik
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I
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 Is the FM

, ,i j kq



Objective is to minimize J - the 

core of 3|4DVAR



Most solution methods utilize information about the 

slope in the region of the solution, to aid in iteration 

increments to find the minimum as efficiently as 

possible.  This is the role of the adjoint.



Most solution methods utilize information about the 

slope in the region of the solution, to aid in iteration 

increments to find the minimum as efficiently as 

possible.  This is the role of the adjoint.



Most solution methods utilize information about the 

slope in the region of the solution, to aid in iteration 

increments to find the minimum as efficiently as 

possible.  This is the role of the adjoint.

From: GSI Tutorial



Define the forward model (FM)
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Define the penalty term or functional to minimize (J)

21
( GPS observation)

2
J I 

_

_

p top

p sfc

q
I dp

g
 

This integral can be formulated to units of 

centimeters to match GPS.  But we move the “g” 

term to modify TPW to be in the same units as 

vLAPS q.

*

* GPS here has been modified as TPW*g*100. to match g/kg & hPa units.



Surface Layer

Integrating in

Vertical (k)

Must take into 

account only 

atmosphere above 

ground

SURFACE

(SH, P)k

Surface P

(SH, P)ks

(SH, P)K



This is NOT at all similar to 
the “old LAPS”

• The forward model in the K dimension is 
similar to old LAPS. (perhaps the only thing)

• Cannot use nearest gridpoint assignment.

• Bilinear interpolation (nearest neighbor) is 
used instead.

• vLAPS uses an adjoint for accelerating solution 
convergence, old LAPS didn’t do this - next we 
look at the adjoint



Concept of the Adjoint

J

I = integrated water through the vertical at all k level computed from 

the control variable “q”

J = 1/2( I – GPS observation)2

Our FM is defined 

exactly at the ob 

location using the 

unit cell concept.

So also is the 

penalty term J

defined at that 

same location.

1, ,i j kq 

1, 1,i j kq  

, ,i j kq

, 1,i j kq 



Just what is an adjoint?

• The GPS adjoint is the partial derivative of J (at the GPS 

location) with respect to a control variable.  It is must be spread to  

the 4 gridpoints surrounding the J location.  The assignment of the 

partial derivative at the 4 points through bilinear interpolation using 

the same weights used for the FM.

• The adjoint is used in the solver to modify the control variables 

on the grid, thus changing the FM value at the ob location.

• If the adjoint value is zero, there will be no change to a control 

variable.  Typically it is zero except around the cell containing the  

ob.  Note the adjoint becomes zero when the FM = observation, 

e.g., solution!

• The derived adjoint can be incorrect and the solver may still 

converge.  Usually this is the case if it is wrong in magnitude.  The 

solver may not converge at all if the adjoint is wrong in sign (+/-).



Computation of the partial 
derivative of J WRT q at level k
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Concept of Adjoint
Take the partial 

derivative of J at 

level k with 

respect to the 

control variable q.
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Concept of Adjoint

Bilinear weighted

partial derivative of 

J by control 

variable “q” on 

level k

Extrapolate to grid 

cell corners for 

each level k from 

ks to K.
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Adjoint (interior)
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Note that due to the nature of indices, level “k” will appear more than once 

when the above is expanded, here look at terms 1-5 and focus on “3”.
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Note that due to the nature of indices, level “k” will appear more than once 

when the above is expanded, here look at terms 1-5 and focus on “3”.
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Adjoint (interior)
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Note that due to the nature of indices, level “k” will appear more than once 

when the above is expanded, here look at terms 1-5 and focus on “3”.
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Note that due to the nature of indices, level “k” will appear more than once 

when the above is expanded, here look at terms 1-5 and focus on “3”.
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1 1( GPS observation) [0.5 ( ) ]k k
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J
I p p
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 


  



Is valid for interior of the column only.   k .ne. K, and k .ne. ks

The top and bottom cells are special cases.

• It is very important to note that the (I-GPS ob) difference determines the 

SIGN of the gradient.  Also the sign can be incorrect if you have made an 

error in the i, j, or k indices. 

Adjoint (interior)



Concept of Adjoint (top)
1

1 1( GPS observation) 0.5 ( ) ( ) ( )
s

K

k k k k ks sfc ks

k kk k

J
I q q p p q p p

q q



 



    
      

    


Now look at K, the top special case.  Here call it “5” where 5=K and 4 = K-1 

and we assume there is no “6” because “5” is at the top. 
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Concept of Adjoint (top)
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Now look at K, the top special case.  Here call it “5” where 5=K and 4 = K-1 

and we assume there is no “6” because “5” is at the top. 
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Concept of Adjoint
(bottom)
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Now look at ks (and sfc), the bottom special case. Index ks. 
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Concept of Adjoint
(bottom)
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Now look at ks (and sfc), the bottom special case. Index ks. 
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Don’t make this mistake



Full Numerical Adjoint
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The full adjoint has 3 parts to it.  Top, middle, and near-surface.  
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Concept of Adjoint

Bilinear weighted

partial derivative of 

J by control 

variable “q” on 

level k

Extrapolate to grid 

cell corners for 

each level k from 

ks to K.
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Adjoint Testing

, ,i j k

J

q





. . , ,i j k i j kq q

• Example, test          for each place in the 
grid where it exists.

• Use perturbation and the forward model at 
ONE GRIDPOINT to approximate associated 
partial derivative of J by changing qi,j,k

by                  .

• Perform for all control-variable gridpoints and 
see if adjoint partials, match thusly computed 
partials.



Adjoint test
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Adjoint test (cont.)

, ,i j kq
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Adjoint test (cont.)
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Adjoint test (cont.)
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• The trick is usually to increase       
not decrease it!, ,i j kq



Solver Test
• Place the Forward model AND adjoint into the 

solver routine by themselves and see if 
convergence occurs.

• This is external to vLAPS but uses the same 
solver (important, you study this without 
other data)

• Important, since if you put it into vLAPS 
without this test being successful, you don’t 
know what might be going on.



Solver Test Output
RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

N = 6162373 M = 14

At X0 0 variables are exactly at the bounds

j_gps_changing 10.82477 

At iterate 0 f= 1.08248D+01 |proj g|= 1.20899D-01

j_gps_changing 10.72041 

At iterate 1 f= 1.07204D+01 |proj g|= 1.20337D-01

j_gps_changing 0.2229756 

At iterate 2 f= 2.22976D-01 |proj g|= 3.32823D-02

j_gps_changing 2.651105 

j_gps_changing 0.1068712 

At iterate 3 f= 1.06871D-01 |proj g|= 1.02766D-02

j_gps_changing 5.9161554E-03

At iterate 4 f= 5.91616D-03 |proj g|= 3.64435D-03

j_gps_changing 1.8386532E-02

j_gps_changing 4.5083204E-04

At iterate 5 f= 4.50832D-04 |proj g|= 7.51569D-04

j_gps_changing 9.4540301E-05

At iterate 6 f= 9.45403D-05 |proj g|= 2.33093D-04

j_gps_changing 2.1491633E-05

At iterate 7 f= 2.14916D-05 |proj g|= 1.60543D-04

j_gps_changing 8.4271760E-06

At iterate 8 f= 8.42718D-06 |proj g|= 9.71679D-05

j_gps_changing 2.0542170E-06

At iterate 9 f= 2.05422D-06 |proj g|= 3.19417D-05

j_gps_changing 2.0960721E-07

At iterate 10 f= 2.09607D-07 |proj g|= 8.97315D-06

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during 

Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized 

Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F

***** 10 13 53 0 0 8.973D-06 2.096D-07

F = 2.0960720803486765E-007

CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL 

Cauchy time 2.640E+00 seconds.

Subspace minimization time 1.929E+01 seconds.

Line search time 1.365E+01 seconds.



Analysis Performance



Concept of a FM
Multiple obs

EXACT GPS 

ob locations

Bilinear 

interpolation of

control variable 

data to the GPS 

observation

location is done 

uniquely for all 

subgrids – and all 

obs within a 

subgrid.

Ik

Ik

Unique J for each ob location

, ,i j kq



Multi-ob adjoints
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Multi-ob adjoints
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Summary

• The forward model describes the 
observation using surrounding control variables.  

• The J functional compares the FM result to an 
observation and is used to identify minimization 
(solved fit).

• The adjoint is derived from the FM.  Imperfect 
adjoints can still work, but efficiency will be lost.  
There is only ONE true adjoint for a FM.

• The adjoint accelerates the solution operation.



Summary (2)

• Watch for index errors in coding.  They are hard to 
spot and will really cause problems.

• Even though a poor adjoint can allow the system to 
solve, a sign error can cause the system to always 
overshoot in the wrong direction winding up with an 
inability to converge, or very very slow convergence.

• The multi-grid approach allows for memory of the 
control variable fields as one goes to more and more 
dense grids.  For this reason only one “cell” around 
the measurement needs an adjoint computation.



Summary (3)

• Multiple observations within a cell (especially likely 
at coarse initial grid sizes), will result in more than 
one partial derivative at a cell’s grid points.  This is 
handled by summing the derivatives.

• Also, observations in adjacent cells will generate 
partial derivatives at the 2 shared grid points.  Again, 
this situation is handled by summing the derivatives 
there together to get the adjoint.



Summary (4)

• For testing, remember to test the numerical 
approximation for the adjoint with the Calculus 
version first.

• When testing with the solver, test with numerical 
solver alone.  This will not mix its performance with 
other solved variables.

• The last step is to incorporate the adjoint with others 
in the multivariate solver to combine the solution 
with other observations.



Summary (5)

• Final word of caution.

• Just because you have added a new observation to 
your analysis, you are not guaranteed to see 
associated model performance improve.   Obviously 
this is the desired result, but your model may do 
things you “don’t know about.”  Your new 
observations might “throw off” bias corrections you 
don’t know about in the model.  In many ways, the 
model is a black box to your efforts.  If you are lucky, 
you will have a better forecast.


